An adaptive maximum-likelihood deconvolution algorithm

نویسندگان

  • Chong-Yung Chi
  • Wu-Ton Chen
چکیده

Kormylo and Mendel proposed a maximum-likelihood deconvolution (MLD) algorithm for estimating a desired sparse spike sequence p.(k), modelled as a Bernoulli-Gaussian (B-G) signal, which was distorted by a linear time-invariant system v(k). Then Chi, Mendel and Hampson proposed another MLD algorithm which is a computationally fast MLD algorithm and has been successfully used to process real seismic data. In this paper, we propose an adaptive MLD algorithm, which allows v(k) to be a slowly time-varying linear system, for estimating the B-G signal ~(k) from noisy data. Like the previous MLD algorithms, the proposed adaptive MLD algorithm can also recover the phase of v(k) when v(k) is time-invariant. Some simulation results are provided to support the proposed algorithm. Zasammenfassung. Kormylo und Mendel haben einen Maximum-Likelihood Entfaltungs-(MLD)-Algorithmus fiir die Sch/itzung einer gewiinschten, sp~irlichen impulsfolge /~(k) vorgeschlagen, die als ein Bernoulli-Gau8 (B-G) Signal modelliert wird, das durch ein lineares, zeitinvarientes System v(k) verzerrt wird. Danach haben Chi, Mendel und Hampson einen anderen MLD-Algorithmus vorgeschlagen, der ein rechentechnisch schneller MLD-AIgorithmus ist und beim Verarbeiten echter seismischer Daten erfolgreich eingesetzt wurde. In diesem Beitrag schlagen wir einen adaptiven MLD-Algorithmus vor, der es erlaubt, dab v(k) ein langsam zeitvariantes lineares System ist, und das B-G-Signal aus verrauschten Daten schatzt. Genau wie die vorhergehenden MLD-Algorithmen kann der vorgeschlagene adaptive MLD-AIgorithmus auch die Phase yon v(k) gewinnen, wenn v(k) zeitinvariant ist. Einige Simulationsergebnisse werden vorgestellt, die den vorgeschlagenen Algorithmus unterstiJtzen. R6sum6. Kormylo et Mendel ont propos6 un algorithme de d6convolution par maximum de vraisemblance (MLD) pour l'estimation d'une s~quence ~(k) d'impulsions clairsem~e, mod61is~e par un signal Bernoulli-gaussien (B-G) qui a ~t~ d6form6 par un syst~me lin6aire v(k) invariant dans le temps. Puis Chi, Mendel et Hampson ont propos6 un autre algorithme MLD qui est rapide au niveau du calcul et a 6t6 utilis6 avec succ~s pour traiter des donn6es sismiques r6elles. Dans cet article, nous proposons un algorithme MLD adaptatif, ce qui permet ~ v(k) d'etre un syst~me lin6aire variant lentement dans le temps, pour l'estimation du signal B-G p.(k) /t partir de donn6es bruit6es. De m~me que les algorithmes MLD pr6c6dents, l'algorithme MLD adaptatif propos6 peut 6galement recouvrer la phase de v(k) quand v(k) est invariant dans le temps. Nous pr6sentons quelques r6sultats de simulation pour montrer l'int6r& de l'algorithme propos6.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Multi-Frame Adaptive Optics Image Restoration Algorithm Using Maximum Likelihood Estimation with Poisson Statistics

An adaptive optics (AO) system provides real-time compensation for atmospheric turbulence. However, an AO image is usually of poor contrast because of the nature of the imaging process, meaning that the image contains information coming from both out-of-focus and in-focus planes of the object, which also brings about a loss in quality. In this paper, we present a robust multi-frame adaptive opt...

متن کامل

The Development of Maximum Likelihood Estimation Approaches for Adaptive Estimation of Free Speed and Critical Density in Vehicle Freeways

The performance of many traffic control strategies depends on how much the traffic flow models have been accurately calibrated. One of the most applicable traffic flow model in traffic control and management is LWR or METANET model. Practically, key parameters in LWR model, including free flow speed and critical density, are parameterized using flow and speed measurements gathered by inductive ...

متن کامل

The Development of Maximum Likelihood Estimation Approaches for Adaptive Estimation of Free Speed and Critical Density in Vehicle Freeways

The performance of many traffic control strategies depends on how much the traffic flow models are accurately calibrated. One of the most applicable traffic flow model in traffic control and management is LWR or METANET model. Practically, key parameters in LWR model, including free flow speed and critical density, are parameterized using flow and speed measurements gathered by inductive loop d...

متن کامل

An Inter-comparison of Three Spectral-Deconvolution Algorithms for Gamma-ray Spectroscopy

This paper presents a comparison of three deconvolution techniques, Maximum Likelihood, Maximum Entropy and Linear Regularisation for the unconstrained deconvolution of gamma-ray spectra. These convert the raw energy-loss spectra obtained using a standard scintillation counter, into a good representation of the incident gamma-ray spectrum. This work is based on the use of an industry-standard 3...

متن کامل

AIDA: an adaptive image deconvolution algorithm with application to multi-frame and three-dimensional data.

We describe an adaptive image deconvolution algorithm (AIDA) for myopic deconvolution of multi-frame and three-dimensional data acquired through astronomical and microscopic imaging. AIDA is a reimplementation and extension of the MISTRAL method developed by Mugnier and co-workers and shown to yield object reconstructions with excellent edge preservation and photometric precision [J. Opt. Soc. ...

متن کامل

Estimation of Adaptive Parameters for Satellite Image Deconvolution

The deconvolution of blurred and noisy satellite images is an ill-posed inverse problem, which can be regularized within a Bayesian context by using an a priori model of the reconstructed solution. Since real satellite data show spatially variant characteristics, we propose to use an inhomogeneous model. We use the Maximum Likelihood Estimator (MLE) to estimate its parameters. We demonstrate th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Signal Processing

دوره 24  شماره 

صفحات  -

تاریخ انتشار 1991